Fourier expansions of Kac–Moody Eisenstein series and degenerate Whittaker vectors

نویسندگان

  • Philipp Fleig
  • Axel Kleinschmidt
  • Daniel Persson
چکیده

Motivated by string theory scattering amplitudes that are invariant under a discrete U-duality, we study Fourier coefficients of Eisenstein series on Kac– Moody groups. In particular, we analyse the Eisenstein series on E9(R), E10(R) and E11(R) corresponding to certain degenerate principal series at the values s = 3/2 and s = 5/2 that were studied in [1]. We show that these Eisenstein series have very simple Fourier coefficients as expected for their role as supersymmetric contributions to the higher derivative couplings R4 and ∂4R4 coming from 1/2-BPS and 1/4-BPS instantons, respectively. This suggests that there exist minimal and next-to-minimal unipotent automorphic representations of the associated Kac–Moody groups to which these special Eisenstein series are attached. We also provide complete explicit expressions for degenerate Whittaker vectors of minimal Eisenstein series on E6(R), E7(R) and E8(R) that have not appeared in the literature before.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eisenstein Series on Affine Kac-moody Groups over Function Fields

In his pioneering work, H. Garland constructed Eisenstein series on affine Kac-Moody groups over the field of real numbers. He established the almost everywhere convergence of these series, obtained a formula for their constant terms, and proved a functional equation for the constant terms. In his subsequent paper, the convergence of the Eisenstein series was obtained. In this paper, we define ...

متن کامل

Integer Forms of Kac–moody Groups and Eisenstein Series in Low Dimensional Supergravity Theories

Abstract. Kac–Moody groups G over R have been conjectured to occur as symmetry groups of supergravities in dimensions less than 3, and their integer forms G(Z) are conjecturally U– duality groups. Mathematical descriptions of G(Z), due to Tits, are functorial and not amenable to computation or applications. We construct Kac–Moody groups over R and Z using an analog of Chevalley’s constructions ...

متن کامل

Integral Forms of Kac–moody Groups and Eisenstein Series in Low Dimensional Supergravity Theories

Kac–Moody groups G over R have been conjectured to occur as symmetry groups of supergravities in dimensions less than 3, and their integer forms G(Z) are conjecturally U– duality groups. Mathematical descriptions of G(Z), due to Tits, are functorial and not amenable to computation or applications. We construct Kac–Moody groups over R and Z using an analog of Chevalley’s constructions in finite ...

متن کامل

Kac–moody Groups and Automorphic Forms in Low Dimensional Supergravity Theories

Kac–Moody groups G over R have been conjectured to occur as symmetry groups of supergravity theories dimensionally reduced to dimensions less than 3, and their integral forms G(Z) conjecturally encode quantized symmetries. In this review paper, we briefly introduce the conjectural symmetries of Kac–Moody groups in supergravity as well as the known evidence for these conjectures. We describe con...

متن کامل

Introduction to zeta integrals and L-functions for GLn

All known ways to analytically continue automorphic L-functions involve integral representations using the corresponding automorphic forms. The simplest cases, extending Hecke’s treatment of GL2, need no further analytic devices and very little manipulation beyond Fourier-Whittaker expansions. [1] Poisson summation is a sufficient device for several accessible classes of examples, as in Riemann...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015